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Forkhead box protein A1 (FOXA1) is a pioneer factor of estrogen
receptor α (ER)–chromatin binding and function, yet its aberration
in endocrine-resistant (Endo-R) breast cancer is unknown. Here,
we report preclinical evidence for a role of FOXA1 in Endo-R breast
cancer as well as evidence for its clinical significance. FOXA1 is
gene-amplified and/or overexpressed in Endo-R derivatives of sev-
eral breast cancer cell line models. Induced FOXA1 triggers onco-
genic gene signatures and proteomic profiles highly associated
with endocrine resistance. Integrated omics data reveal IL8 as
one of the most perturbed genes regulated by FOXA1 and ER
transcriptional reprogramming in Endo-R cells. IL-8 knockdown in-
hibits tamoxifen-resistant cell growth and invasion and partially
attenuates the effect of overexpressed FOXA1. Our study high-
lights a role of FOXA1 via IL-8 signaling as a potential therapeutic
target in FOXA1-overexpressing ER-positive tumors.

FOXA1 | estrogen receptor | breast cancer | transcriptional reprogramming |
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About 75% of breast cancers express estrogen receptor α
(ER), which is a strong driver and therapeutic target for

these ER-positive (+) tumors. Endocrine therapy with aromatase
inhibitors lowers the level of estrogen; selective ER modulators
such as tamoxifen (Tam) bind to and block ER, and down-reg-
ulators such as fulvestrant (Ful) bind to ER and induce its
degradation. Endocrine therapy prolongs disease-free and
overall survival when used in the adjuvant setting and can induce
long-term remission in some patients in the metastatic setting.
Despite the overall success of endocrine therapy, tumors in more
than 50% of patients with metastatic disease fail to respond, and
nearly all metastatic patients with initially responding tumors
eventually experience tumor relapse and die from acquired re-
sistance (1, 2). Although there are many causes for resistance,
the most predominant mechanisms include altered ER signaling
and interactions between ER, its coregulators, and various
growth factor pathways. These alterations facilitate adaptation
from ligand-dependent to ligand-independent ER activation,
which is further triggered by cross-talk with growth factor receptor
(GFR) signaling pathways (3–6). However, the key mediators
of ER transcriptional reprogramming in promoting endocrine-
resistant (Endo-R) breast cancer remain poorly understood.
Recently, a potential role of the forkhead box protein A1

(FOXA1) has been suggested in mediating endocrine resistance in
breast cancer (7, 8). FOXA1 is termed a “pioneer factor” because it
binds to highly compacted or “closed” chromatin via a domain
similar to that of linker histones and, through its C-terminal domain,

renders these genomic regions more accessible to other tran-
scription factors, such as ER (9), progesterone receptor (PR)
(10), and androgen receptor (AR) (11). As such, FOXA1 has a
key role in demarcating the tissue-specific binding sites of these
nuclear receptors (12). Together with ER, FOXA1 contributes
to the pattern of gene transcription that induces luminal cell
differentiation (13) and represses the basal phenotype (14). Like
ER, FOXA1 is associated with luminal subtype and good prog-
nosis in breast cancer (15, 16). However, FOXA1 and ER have
also been found to be coexpressed at high levels in breast cancer
metastases that are resistant to endocrine therapy (8), suggesting
a continuing and potentially altered role of FOXA1 in ER+

metastatic and/or resistant disease. A recent study in endome-
trial cancer found increasing levels of FOXA1 in metastases,
even though high levels of FOXA1 in primary tumors were
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associated with good outcome (17). At the molecular level, ge-
nome-wide mapping of cis-regulatory elements (cistromes) has
shown that the FOXA1-binding motif is enriched in a distinct ER
cistrome identified in ER+ primary tumors from patients who are
likely to relapse, suggesting a functional link of FOXA1 with ag-
gressive ER+ disease (8). These contradictory findings of the sig-
nificance of FOXA1 in early and late tumor stages suggest a
potentially dynamic perturbation of FOXA1 in disease progression.
However, it remains unclear how FOXA1 is engaged in the ER
transcriptional reprogramming in Endo-R breast cancer, and
whether there is any aberration of FOXA1 that contributes to
this process.
The aim of this study was to evaluate the role of FOXA1 in

mediating endocrine resistance in ER+ breast cancer using a panel
of Endo-R breast cancer cell line models, publicly deposited
preclinical and clinical datasets, and functional studies. Our hy-
pothesis was that increased expression of FOXA1 in breast tumors
might contribute to endocrine resistance and tumor progression.
We found that FOXA1 expression was increased in several dif-
ferent ER+ Endo-R derivative cell lines compared with their ER+

parental (P) cells. Induced overexpression of FOXA1 in the P cells
elicited gene signatures and proteomic profiles associated with
multiple oncogenic pathways as well as endocrine resistance. High
levels of FOXA1 mRNA predicted poor outcome in patients with
ER+ tumors receiving Tam. Integrative analysis of cistromic and
RNA sequencing (seq) data suggested that IL-8 serves as an im-
portant mediator of the FOXA1/ER transcriptional reprogram-
ming to promote Endo-R cell growth and invasion. We propose
that targeting IL-8 signaling is a promising strategy to treat ER+

tumors with high levels of FOXA1.

Results
FOXA1 Gene Amplification Is Associated with Tam Resistance in ER+

Breast Cancer Preclinical Models. Five established Endo-R cell
models showed a stable phenotype of sustained cell growth in the
presence of estrogen deprivation (ED) or Tam (Fig. S1). Two
MCF7 Endo-R cell models were independently developed from
the ER+ breast cancer MCF7- L (18) and RN (19) lines. Using
whole-exome-seq, we found that the genomic region (14q21.1)
encompassing only the FOXA1 gene had the highest focal am-
plification ratio in Tam-resistant (TamR) derivatives compared
with P cells in both MCF7-L and RN models [log2 copy number
(CN) ratio of 3.7 and 3.4 in Fig. 1 A and B and Fig. S2 A and B,
respectively]. This FOXA1 gene amplification was found only in
the MCF7-L/RN TamR but not the ED-resistant (EDR) de-
rivative. Furthermore, at a single cell level there was a highly
enriched cell population with FOXA1 amplification (FOXA1 vs.
reference foci ratio ≥4) revealed by FISH in the MCF7-L/RN
TamR compared with P cells (Fig. 1 C and D and Fig. S2 C and
D). Even in the MCF7-L/RN P cells, we found a mixed cell
population with over 50% of cells showing a ratio >2, suggesting
some level of FOXA1 CN gain (CNG) preexisting in the P cells
before developing endocrine resistance. FOXA1 gene amplifi-
cation was also validated using a genomic PCR (gPCR) assay
(Fig. 1E). The FOXA1-CN in MCF7-L/RN P cells was higher
than that in the normal mammary epithelial MCF10A cells. In
fact, MCF7 cells had the highest FOXA1-CN among a panel of
59 breast cancer cell lines [data from the Cancer Cell Line En-
cyclopedia (20)] (Fig. S2E). Two other cell lines, KPL1 and
BT474, also showed high FOXA1-CN. In our gPCR assay, we
also observed a relatively modest but significant FOXA1-CN
increase in TamR but not EDR derivatives of the BT474 model.
FOXA1 amplification was not found in two other ER+ Endo-R
models (ZR75-1 and 600MPE).
Amplification of the genomic region encompassing the

FOXA1 gene has been reported in primary and metastatic tu-
mors of esophagus, lung, thyroid, and prostate (21–23). We an-
alyzed the updated Cancer Genome Atlas (TCGA) breast cancer
dataset (n = 1,105) for CN changes (24, 25). Although FOXA1
gene amplification was found only in 2% of all cases, 20% of
tumors had FOXA1-CN alterations including both CNG and

amplification. The FOXA1-CN was higher in luminal and human
epidermal growth factor receptor 2 (HER2)-enriched subtypes
than in the basal subtype (Fig. 1F), which correlates with the
expression pattern of FOXA1 mRNA across the subtypes (Fig.
S3A). There were more tumors in the luminal B (42%) with
FOXA1-CNG and amplification than in the luminal A (14%)
subtype, suggesting an association of increased FOXA1-CN with
poor clinical outcome. In partial support of this, we found that
FOXA1-CN was significantly higher in lymph-node metastases
compared with the matched primary ER+ luminal tumors (n =
22) in a Gene Expression Omnibus (GEO) dataset (accession no.
GSE56765) (26) (Fig. S3 B and C). Altogether, our preclinical
data and the clinical evidence support a hypothesis that high
levels of FOXA1-CN in aggressive luminal tumors favor the
outgrowth of Endo-R tumors through a subclonal selection or
enrichment in response to endocrine therapy.
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Fig. 1. FOXA1 gene amplification in preclinical ER+ Endo-R cell models.
(A) Overall CN across the genome for MCF7L-TamR related to P cells. Log2(CN
ratio) is shown on the vertical axis. Each point represents the log-trans-
formed CN ratio for each targeted exon, ordered by genomic coordinates
and colored by chromosome using red and blue for subsequent chromo-
somes. Black lines show inferred segments. The arrows point to the segment
with the highest focal amplification exons. (B) Zoom into the 60-Mb region
containing FOXA1 in A. CN ratios for the four FOXA1-targeted exons are shown
as purple squares, and the remaining targeted exons are red circles. The seg-
ment containing FOXA1 contains just the four targeted exons corresponding to
FOXA1. (C) Representative images of bright-field and the FOXA1-FISH of
MCF7L-P and TamR cells show the enrichment of gene amplification in MCF7L-
TamR vs. P cells. Green and red signals indicate the locations where FOXA1 and
chromosome 14 centromere reference (REF) probes were hybridized, re-
spectively. [Scale bar, 100 μm (bright field) and 20 μm (FISH).] (D) Stacked bar
chart summarizes the percentage of cells (n = 65) with FOXA1/REF foci ratio
within indicated ranges. (E) Normalized FOXA1-CN values frommultiple Endo-R
cells were calculated from the results of a real-time gPCR assay. The normal
diploid MCF10A cell line was used as the normalization control (CN = 2, marked
by a dashed line). (F) Box-whisker plots show the FOXA1-CN across the five
molecular subtypes of breast cancer (n = 831) in the TCGA dataset (24).
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FOXA1 Is Overexpressed in Endo-R Derivatives and Is Essential for
Both P and Endo-R Cell Growth in Multiple Preclinical Cell Models.
Although FOXA1 amplification/CNG was seen only in MCF7-L/RN
and BT474 TamR derivatives, FOXA1 mRNA levels were
higher in the TamR derivatives than in the P cells of all five
models (MCF7-L/RN, BT474, ZR75-1, and 600MPE) measured
by quantitative reverse-transcription (qRT)-PCR (Fig. 2A).
Similarly, increased FOXA1 mRNA was also observed in the
EDR derivatives of ZR75-1, 600MPE, and BT474 models. In-
creased FOXA1 protein levels measured by Western blot were
observed in the Endo-R derivatives compared with their P cells
in all five models (Fig. 2B). ER protein was retained in all but
one of the Endo-R cell lines compared with P cells; the ZR75-1
Endo-R model had no detectable ER. Protein levels of classical
ER-regulated genes such as PGR and BCL2, as well as GATA3
(encoding GATA-binding protein 3), which also regulates ER
expression (27), were down-regulated in most of these Endo-R
derivatives compared with P cells (Fig. 2B and Fig. S4 A–C),
suggesting a continuous blockade of the classical ER transcrip-
tional program that is also seen in our previously reported Endo-R
xenograft mouse model (5). Importantly, high FOXA1 protein
levels were also observed by immunohistochemistry (IHC) in
acquired Endo-R MCF7L xenograft tumors in vivo compared
with estrogen-treated controls (Fig. 2C).
To determine the role of ER and FOXA1 in endocrine re-

sistance, we evaluated cell growth of various P and Endo-R de-
rivatives in response to two validated siRNAs targeting ER and
FOXA1 (Fig. 2D). Knocking down ER in the MCF7-L/RN
models significantly inhibited both P and Endo-R cell growth
(Fig. 2 E and F). Both ZR75-1-P and 600MPE-P cells were also
sensitive to ER knockdown; however, cell growth was affected to
a lesser extent by ER knockdown in their Endo-R derivatives

(Fig. 2 G and H). However, FOXA1 knockdown substantially
inhibited the growth of P and Endo-R derivatives of all pre-
clinical models, suggesting an important role of FOXA1 on
breast cancer cell growth even in the setting of endocrine re-
sistance and even in resistant cells that are not affected by
ER knockdown.

FOXA1 Overexpression Elicits an Endo-R Gene Signature and Predicts
Poor Outcome in Patients with ER+ Tumors. To better understand the
role of increased FOXA1 in Endo-R cells, we established a stable
MCF7L/FOXA1 cell model with doxycycline (Dox)-inducible
FOXA1 overexpression. The extent of FOXA1 overexpression in
the MCF7L/FOXA1 cells after Dox induction vs. without Dox was
comparable to that observed in the MCF7L-TamR vs. P cells (Fig.
3A). RNA-seq analysis revealed a total of 440 genes up-regulated
and 217 genes down-regulated [jGfoldj (28) >1.5, false discovery
rate (FDR) <0.05] in +Dox vs. −Dox cells (Fig. 3B). Functional
annotation of these up-regulated genes in the Database for An-
notation, Visualization and Integrated Discovery (DAVID) (29)
showed a robust enrichment of Gene Ontology (GO) terms that
included “cell motion and migration,” “response to hypoxia,” and
“blood vessel development” (P < 0.001). Interestingly, within the
down-regulated genes, the most enriched GO term was “response
to estrogen” (P = 0.0015), suggesting a reduction of ligand-
dependent classic ER transcriptional activity in this model, which
could be partially due to the modest decrease of ER expression
itself (Fig. 3B, Lower). We further used Gene Set Enrichment
Analysis (GSEA) (30) to interrogate the oncogenic gene signa-
tures from MSigDB (31). The MCF7L/FOXA1 gene expression
profile was highly correlated to the gene sets enriched in MCF7
cells overexpressing ligand-activated epidermal GFR or constitu-
tively active MEK1, or in epithelial cell lines overexpressing an
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cells was set as normalization control (= 1).
(B) FOXA1, ER, and PR protein expression using se-
lected antibodies in Western blot analysis across vari-
ous Endo-R cell models. GAPDH was used as a loading
control. (C) Scatter dot plots of FOXA1 Allred score in
MCF7L Endo-R xenograft tumors measured by IHC.
Xenograft tumors in ovariectomized nude mice with
estrogen pellets (E2), or without E2 but treated with
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0.001, Bonferroni post hoc test (multiple testing-
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growth in N.S. knockdown was used as normaliza-
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oncogenic KRAS, suggesting that FOXA1 overexpression en-
hances GFR downstream signaling. In addition, this FOXA1-
induced transcriptomic profile was significantly enriched for the
gene set that was up-regulated in the MCF7 xenograft tumors that
acquired resistance to multiple endocrine therapies from our
previously published study (3) (Fig. 3C). These data suggest that
increased FOXA1 potentially drives a transcriptional program
associated with high GFR signaling that contributes to tumor
aggressiveness and endocrine resistance.
Because differentially expressed genes from our FOXA1-over-

expressing MCF7L/FOXA1 preclinical cell model were enriched
for genes in our previously described signature from Endo-R xe-
nograft models (3), we asked whether FOXA1 levels were corre-
lated with the endocrine resistance signature score in clinical
samples. Indeed, high FOXA1 mRNA levels in 752 ER+ tumors
(32) were positively correlated with the Endo-R gene signature
(Fig. 3D, Spearman correlation, r = 0.083, P = 0.011). Next, we
tested the endocrine response in our Dox-induced FOXA1-over-
expressing MCF7L and ZR75-1 cell models. The highest levels of
FOXA1 induced endocrine resistance in both cell models (Fig. 3 E
and F). Specifically, increased FOXA1 expression was significantly
associated with decreased endocrine sensitivity to Tam in MCF7L/
FOXA1 cells and to ED in ZR75-1/FOXA1 cells, in a FOXA1
level-dependent manner. The role of FOXA1 expression levels in
treatment response was also reflected in clinical samples. In a
metaanalysis of published datasets (kmplot.com) (33), we found
that the top quartile of FOXA1 mRNA levels was associated with
poor relapse-free survival (RFS) in patients with ER+ tumors re-
ceiving Tam (n = 615, P = 0.029), but not in patients without en-
docrine therapy (n = 500, P = 0.81) (Fig. 3 G and H). Collectively,
these data suggest that high FOXA1 expression is functionally,
biologically, and clinically associated with endocrine resistance.

Proteomic Profiles Perturbed by FOXA1 Overexpression Are Associated
with Multiple Oncogenic Pathways. Because of the clinical evidence
for the potential role of FOXA1 in mediating endocrine resistance,
we wanted to further dissect its downstream signaling pathways.
For this, we applied reverse-phase protein arrays (RPPA) to de-
termine the proteomic changes in our FOXA1-overexpressing ER+

cell models, using a total of 204 validated antibodies. Proteins
differentially expressed between +Dox (at day 2 or 5) and −Dox
samples were identified (Dataset S1, one-way ANOVA, P < 0.05)
and visualized in heat maps following hierarchical clustering (Fig. 4
A–C). Consistent with the RNA-seq data, the protein levels of ER
and the products of its classically regulated genes (e.g., PGR,
BCL2, and MYC) were decreased in the MCF7L/FOXA1 +Dox
cells (Fig. S4D). Assigning the total proteins assessed by RPPA into
Kyoto Encyclopedia of Genes and Genomes (KEGG) (34) -de-
fined cancer pathways, we tracked the pathway activation status by
comparing the averaged signals within each pathway between
−/+ Dox samples. We found that the GFR pathways of focal adhe-
sion, ERBB2, and insulin were overactivated in both the MCF7L/
FOXA1 +Dox and ZR75-1/FOXA1 +Dox cells (Fig. 4 D and E,
P < 0.001). The NOTCH pathway, which previously has been
shown to be overactivated in Endo-R breast cancer cells (35), did
not seem significantly perturbed by FOXA1 overexpression in our
cell models, possibly due to the low number of representative
pathway proteins in this RPPA assay. The decreased ER and in-
creased GFR downstream signaling in the MCF7L/FOXA1 +Dox
cells was further confirmed by Western blot showing a FOXA1-
dependent effect (Fig. S5A). The 600MPE/FOXA1 +Dox cells
showed less enhanced GFR signaling, possibly due to an endoge-
nously hyperactivated mitogen-activated protein kinase (MAPK)
pathway caused by a KRAS mutation in this line (36) (Fig. 4F).
Overall, there were 23 commonly up-regulated and 1 down-regulated
(GATA3) proteins across all three cell models upon FOXA1 over-
expression (Fig. 4 G and H). The significantly enriched insulin and
mechanistic target of rapamycin (mTOR) pathways represented by
the 23 commonly up-regulated proteins (Fig. 4I), together with the
commonly decreased luminal lineage marker and reciprocal
ER regulator GATA3 (27), further support the role of increased

FOXA1 in augmenting GFRs and suppressing the classical ER
signaling in ER+ breast cancer.
We also performed RPPA analysis in the MCF7L-TamR cells

with FOXA1 knockdown. Interestingly, the level of proteins re-
lated to the classical ER pathway such as PR and GATA3, which
was decreased in TamR vs. P cells, was restored by FOXA1
knockdown (Fig. S5B). Furthermore, FOXA1 knockdown in
MCF7L-TamR cells suppressed the oncogenic pathways (e.g.,
ERBB2 and insulin receptor) that otherwise were enhanced in
FOXA1-overexpressing P cells (Fig. S5C). The overall proteomic
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genes (jGfoldj >1.5) after FOXA1 overexpression in MCF7L/FOXA1 cells. The
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changes in the P cells with FOXA1 overexpression were inversely
correlated to the changes in the TamR cells with FOXA1
knockdown (Fig. S5D, Pearson correlation, r = −0.645, P =
0.017). Together with previous transcriptomic data, these find-
ings point to a dominant role of increased FOXA1 in aug-
menting oncogenic signaling pathways in endocrine resistance,
resulting in an inhibitory effect on ER expression and classic ER
transcriptional activity.

An Integrative Approach Identifies IL8 As One of the Most Perturbed
Genes Regulated by FOXA1 in Endo-R Cells. To further investigate
the direct impact of FOXA1 on gene expression, we performed
FOXA1 genome-wide chromatin immunoprecipitation followed
by high-throughput seq (ChIP-seq) in MCF7L-P and TamR cells.
A total of 37,227 and 53,215 FOXA1 binding events were found
in MCF7L-P and TamR cells, respectively (Fig. S6). Among
these binding events, there were 21,449 shared FOXA1 binding
events, which accounted for 58% and 40% of total binding
events in P and TamR cells, respectively. Within the distinct
binding events in P and TamR cells, the highest enrichment was
the FOXA1 motif, followed by the GATA motif in P cells, and
the BCL11A and JUN/FOS motifs in TamR cells, suggesting

significant FOXA1–chromatin binding in both P and TamR cells,
albeit on different sites. In parallel with the cistromic profiling,
we also obtained the transcriptomic profiles of both MCF7L-P
and TamR cells using RNA-seq. In an effort to identify the
downstream signaling associated with FOXA1 in endocrine re-
sistance, we integrated the RNA-seq transcriptomic data with
the FOXA1 ChIP-seq data described above. The genes preferen-
tially expressed in either TamR or P cells tended to have more
FOXA1 binding events (tags) represented by reads per million per
nucleotide (RPM), supporting the notion that FOXA1 is indeed
important for defining the distinct gene patterns in both TamR
and P cells (Fig. 5A).
Next, we focused on the top genes that are highly expressed in

MCF7L-TamR compared with P cells and that also carry the
most abundant FOXA1 tags (RPM) in TamR cells around their
gene regions (log2 ratio >0.5) (Fig. 5B). The enriched GO terms
within these top genes include “blood vessel development” (IL8,
CTGF, LOX, ROBO1, HEY1, and GBX2) and “cell migration”
(IL8, CTGF, ROBO1, GBX2, and NR2F1), reminiscent of the
GO terms enriched in the FOXA1-overexpressing MCF7L-P
cells. Indeed, 50% of these genes (e.g., IL8, CTGF, and LOX)
were highly up-regulated in MCF7L/FOXA1 +Dox vs. −Dox
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cells (log2 ratio >0.5), suggesting FOXA1-dependent regulation.
Furthermore, we found that there was a significant overlap be-
tween the genes highly represented in MCF7L/FOXA1 +Dox
cells (n = 440, Gfold >1.5, FDR <0.05) and the TamR signature
genes (n = 428, jlog2-ratioj >1.5, FDR <0.05) (Fig. 5C, Fisher’s
exact test, P < 0.0001). These genes included IL8, CTGF, and
LOX, further suggesting that they may play a role in the FOXA1-
dependent mechanism of Tam resistance. Finally, we found that
about 50% of genes (including IL8, CTGF, and GBX2) highly
expressed in TamR cells with enhanced FOXA1 binding sites
were repressed by ER knockdown in TamR cells, suggesting that
at least some of the genes regulated by increased FOXA1 are
also dependent on ER.
We verified the robust increase in mRNA levels of IL8, the

gene at the top of the list, in our two independent TamR cell
models from the MCF7 line (L and RN) by qRT-PCR (Fig. 5D).
In addition, significantly increased IL-8 expression was also found
in both 600MPE and ZR75-1 Endo-R cell derivatives compared
with their P cells, although the magnitude was much smaller in
ZR75-1 Endo-R cells. Because ER expression is maintained in
these Endo-R cells, except the ZR75-1 model, we postulated that
the robust up-regulation of IL-8 might need both ER and FOXA1.
It has been reported that the FOXA1-mediated reprogramming
of ER binding is associated with the differential ER-binding
program in ER+ tumors from patients with poor outcome (8). We
hypothesized that increased FOXA1 may contribute to ER
transcriptional reprogramming in our Endo-R cells. To better
appreciate the impact of increased FOXA1 on transcriptional
switching of ER from a ligand-dependent to a growth factor-
induced and ligand-independent program, we further integrated our
RNA-seq data of FOXA1-overexpressing MCF7L/FOXA1 cells
with the existing FOXA1 cistrome (7) as well as the ER cistrome
induced by estrogen (E2) or epidermal growth factor (EGF) (37)
in MCF7 cells. As shown in Fig. 5E, there were overlapping as well
as distinct subsets among the genes predicted from the FOXA1
and ER cistromes [genes with FOXA1/ER binding sites ±20 kb of
their transcription start sites (TSS)]. We intersected the up-
regulated (UP) or not-altered (NA) genes induced by FOXA1 in
our MCF7L/FOXA1 cells and the list of genes putatively associ-
ated with the FOXA1 cistrome and the ER cistrome induced by
EGF, E2, or both. We found that the FOXA1-UP genes were
highly enriched for the genes associated with FOXA1 binding
and ER binding induced by EGF but not by E2 (Fig. 5F, Fisher’s
exact test, P < 0.001). Notably, IL8 and CTGF were found again
among the genes with both FOXA1 binding and EGF-induced ER
binding, suggesting that the gene regulation by increased FOXA1
involves a growth factor-stimulated ER-dependent process. These
data suggest that high levels of FOXA1 may coordinate in the ER
transcriptional reprogramming toward a more growth factor-induced
cistromic profile, leading to endocrine resistance by a mechanism
similar to that we had previously reported in an ER/HER2-positive
MCF7 cell model (38, 39).

Increased FOXA1, Together with ER, Coregulates IL-8 Expression. Next,
we investigated the regulation of IL-8. Previous cistromic data in
MCF7 cells (7, 37) revealed that there were two FOXA1 binding
sites at the distal (dis.) and proximal (pro.) regions upstream of the
IL8 TSS, and one EGF-stimulated ER binding site at the dis. re-
gion (Fig. 6A). Our FOXA1 ChIP-seq data showed that the
FOXA1 binding at the dis. region of IL8 in MCF7L-TamR cells
was enhanced compared with that in MCF7L-P cells upon either
Tam or E2 treatment (Fig. 6B). Using ChIP followed by qPCR, we
verified the enhancement of FOXA1 binding at the dis. region in
MCF7L-TamR cells (Fig. 6C). Furthermore, there was an en-
hanced recruitment of ER at the dis. region in MCF7L-TamR
cells, the same region where ER binding was previously shown in
MCF7 cells treated by EGF (37) or a mitogenic mixture (8) in the
absence of the E2 ligand. The ER binding at the pro. region was
also enhanced in TamR vs. P cells in this ChIP-qPCR assay. These
data suggest that ER can regulate IL-8 in a ligand-independent
manner in the context of high GFR signaling associated with en-

docrine resistance. IL-8 mRNA levels in the two TamR cell models
(MCF7L and 600MPE) were reduced by either ER or FOXA1
knockdown (Fig. 6 D and E), with the strongest reduction in the
MCF7L-TamR cells from knockdown of FOXA1, suggesting that
these binding events are also biologically relevant. In parallel, se-
cretory IL-8 protein was dramatically induced by FOXA1 over-
expression in MCF7L-P cells; the increased IL-8 by FOXA1
was substantially reduced by simultaneous ER knockdown
(Fig. 6F). This phenomenon could be recapitulated in a second
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data in MCF7L-P and TamR cells. Genes aligned in RNA-seq were calculated for
their expression log2 ratio of fragments per kilobase of transcript per million
mapped reads (FPKM) in TamR vs. P cells, by which the genes were sorted in a
descending order. FOXA1 binding events (tags) within ± 20 kb of each gene’s TSS
were counted and represented by average normalized RPM for every 300 con-
secutive genes along the order of sorted genes from RNA-seq. These FOXA1 tags
were plotted separately for P (in blue) and TamR (in red) cells. (B) Heat maps of
genes with high expression [log2(FPKM)] and with enriched FOXA1 binding (log2
ratio of RPM) in TamR vs. P cells. Heat maps of the expression in these genes (log2
ratio of FPKM) in MCF7L/FOXA1 +Dox vs. −Dox cells and in TamR cells with si-ER
vs. si-N.S. knockdown are also shown. (C) Venn diagram showing the overlap
genes, including IL8, CTGF, and LOX, between the FOXA1-overexpression (O.E.)
up-regulated genes and the MCF7L-TamR signature genes. P value was calcu-
lated by Fisher’s exact test. (D) IL-8 gene expression measured by qRT-PCR in four
Endo-R cell models. Data represent means ± SEM, *P < 0.05, **P < 0.01, ***P <
0.001, two-sided t test for all comparisons between Endo-R and P cells. (E) Venn
diagram showing the overlap among the predicted genes with the binding of
FOXA1 and EGF/E2-stimulated ER within ± 20 kb of TSS in MCF7 cells. The gene
sets with highlighted numbers (in red) were used for the following analysis.
(F) The genes induced (UP) or not altered (NA) by FOXA1 overexpression were
intersected with the FOXA1 and ER cistromes. Gene enrichment within the
FOXA1-UP gene set for the genes associatedwith FOXA1 binding and ER binding
induced only by EGF, E2, or both was compared with the enrichment within the
FOXA1-NA gene set. ***P < 0.001, Fisher’s exact test.
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600MPE/FOXA1 cell model (Fig. 6G), supporting the notion
that high levels of FOXA1 and ER might coregulate IL-8 ex-
pression. In line with the increased FOXA1 and ER protein
levels in our MCF7L Endo-R xenograft tumors (Fig. 2C and Fig.
S7 A and B), IL-8 expression was also up-regulated in both TamR
and EDR tumors in this xenograft model (Fig. 6 H and I).
Moreover, we measured FOXA1 and IL-8 protein levels in a
tissue microarray composed of primary ER+ tumor specimens
(n = 85) archived in our tumor bank. FOXA1 staining was localized
mainly in nuclei, whereas IL-8 staining was mainly in paranuclear
regions of cancer cells (Fig. 6J). Paranuclear staining of IL-8 was
also seen both in MCF7L-TamR xenograft tumors and in TamR
cells in vitro (Fig. S7C). The proportion of IL-8 positive tumors
gradually increased with increasing FOXA1 in these ER+ human
primary breast tumors (Fig. 6K, Fisher’s exact test, P = 0.006),
consistent with the notion that FOXA1 regulates IL-8.

IL-8 Mediates the Effect of Augmented FOXA1 on Cell Growth,
Invasion, and Endocrine Resistance. To evaluate the role of IL-8
as a downstream effector of increased FOXA1 in endocrine re-

sistance, we obtained the transcriptomic profiles of MCF7L-
TamR cells with FOXA1 or IL-8 knockdown by using RNA-seq.
Comparing the genes differentially expressed in TamR cells
upon FOXA1 knockdown (jGfoldj >0.5), we found a striking
similarity in the expression patterns of these same genes in
TamR cells upon IL-8 knockdown (Fig. S8A), suggesting a cru-
cial role of IL-8 in the gene expression perturbations induced
by FOXA1 in Endo-R cells. Like FOXA1 knockdown, IL-8
knockdown potently inhibited cell growth in both MCF7L-P and
TamR cells, with a greater growth inhibitory effect in TamR than
in P cells (Fig. 7A, two-way ANOVA interaction test, P < 0.001).
This knockdown effect was rescued by coexpression of an IL-8
cDNA with the IL-8 siRNA sequences (#2) targeting the
3′-UTR region of the IL8 gene, but not with the other siRNA
(#1) targeting the coding region of IL-8 (Fig. 7B). Because
FOXA1 knockdown in MCF7L-TamR cells suppressed multi-
ple oncogenic pathways that otherwise were up-regulated in
FOXA1-overexpressing P cells (Fig. S5C), we asked whether IL-8
knockdown in TamR cells leads to a similar change in signaling.
Indeed, the activated signaling of multiple GFR downstream
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Fig. 6. Increased FOXA1 and ER regulate IL-8 expression in ER+ breast cancer. (A) Schematic diagram of ER and FOXA1 binding within the IL8 gene locus as defined by
EGF-stimulated ER ChIP-on-chip (37) and FOXA1 ChIP-sEq. (7) in MCF7 cells. (B) Snapshot of FOXA1 continuous peaks from ChIP-seq data showing the binding pattern
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pathways (e.g., pAKT, pMAPK, and pS6) in TamR cells was
reduced by IL-8 knockdown (Fig. 7C).
To further investigate the relationship of IL-8 and FOXA1 in

endocrine response, we established a series of inducible MCF7L
cell lines with overexpression of YFP (control) or FOXA1
combined with concomitant knockdown of luciferase (control) or
IL-8 upon induction by Dox. As a result, the increased IL-8 upon
FOXA1 induction was substantially reduced by coexpression of
IL8-shRNA (Fig. 7D). In contrast, FOXA1 induction was not
altered by IL-8 knockdown (Fig. 7E). Without Dox, all of the
MCF7L stable lines showed similar sensitivity to endocrine
treatment (data not shown). With Dox, IL-8 knockdown alone
increased endocrine sensitivity in the ED group (Fig. 7F). Con-
versely, FOXA1 overexpression alone decreased the endocrine
sensitivity to all of the antiestrogen therapies. Importantly, the
reduced endocrine sensitivity by overexpressing FOXA1 could be
partially reversed by concomitant IL-8 knockdown, suggesting that
IL-8 is indeed one of the key downstream mediators of FOXA1 in
conferring endocrine resistance. Finally, we used RPPA to mea-
sure the signaling changes upon concomitant FOXA1 over-
expression and IL-8 knockdown. Among the proteins up-regulated
by FOXA1 overexpression in MCF7L/FOXA1 cells, over 70%
exhibited reduced expression upon concomitant IL-8 knock-
down (Fig. S8B), including the phosphorylated proteins of
multiple GFR downstream pathways, such as AKT (pAKT),
JNK (pc-Fos), MAPK (pMAPK), JAK-STAT (pSTAT3/6), and
mTOR (pmTOR). These data suggest that the contribution of
IL-8 to FOXA1-induced endocrine resistance is partially me-
diated by GFR downstream signaling enhanced by high FOXA1
expression.
Because deregulated IL-8 signaling also contributes to cancer

cell migration, invasion, and metastasis (40, 41), we next evalu-
ated the role of IL-8 in cell invasiveness. We found that IL-8
knockdown significantly reduced cell invasion in MCF7L-TamR,
but not MCFL-P, cells, which are much less invasive at baseline
(Fig. 7G). The invasiveness of MCF7L-TamR cells was also re-
duced by FOXA1 knockdown (Fig. S9A). Both 600MPE-P and
TamR cells showed stronger invasiveness, possibly due to the
constitutively activated RAS/RAF/MAPK pathway. IL-8 knock-
down partially mitigated the invasiveness of both 600MPE-P and
TamR cells (Fig. S9B). In parallel, FOXA1 overexpression in
both MCF7L-P and 600MPE-P cells enhanced cell invasion,
which was abrogated by IL-8 knockdown (Fig. 7H and Fig. S9C).
These findings support a role for IL-8 in mediating cell invasion
in both TamR and FOXA1-overexpressing P cells.

Discussion
In characterizing our breast cancer Endo-R cell models to obtain
clues for potential mechanisms of endocrine resistance in pa-
tients, we discovered gene amplification of the ER pioneer factor
FOXA1 in two independently derived TamR lines of MCF7
cells, and we found FOXA1 overexpression without amplifica-
tion in several other cell lines resistant to Tam or to ED. Recent
studies have unveiled gain-of-function mutations in ESR1, the
gene encoding ER, in 15–20% of metastatic ER+ Endo-R tu-
mors (42–45). Genomic amplification or overexpression of
FOXA1 may be another mechanism modulating ER activity to
promote tumor aggressiveness and endocrine resistance. We
observed FOXA1-CNG and amplification in 20% of the TCGA
breast tumors, with a broader FOXA1-CNG distribution in the
luminal B subtype. In a recent study reporting genomic profiling
of clinical samples, about one-third (7/20) of the ER+ residual
disease showed CN changes after 6 mo of neoadjuvant anas-
trozole or Ful treatment (46). Interestingly, compared with the
baseline tumors, focal amplicons involving the FOXA1 or ESR1
gene appeared in two separate cases in the anastrozole arm,
supporting clonal selection by the treatment in a subgroup of
patients as a mechanism to compensate or overcome the in-
hibition of the clinical target/pathway. These data provide evi-
dence for the clinical relevance of our findings in the Endo-R
cell line models and further suggest that the genetic alterations

in the ER pathway (e.g., FOXA1 and ESR1) might drive the
outgrowth of rare cell populations within primary tumors that
could contribute to acquired endocrine resistance.
In addition to gene amplification, we found that increased

FOXA1 expression occurred at the mRNA and protein levels in
other Endo-R cell models in which amplification was not evi-
dent. The epigenetic and posttranscriptional regulation of
FOXA1 expression in breast and bladder cancer reported by
others (47, 48) might also apply in endocrine resistance. In ad-
dition, a recent study of molecular profiles of invasive lobular
carcinoma identified a cluster of FOXA1 activating mutations
that associated with its expression and activity in promoting
DNA demethylation of its binding sites (49). The chromatin
binding affinity and activity of FOXA1 can also be modulated by
a set of breast cancer risk-associated SNPs (50). Collectively, we
speculate that there are multiple mechanisms by which FOXA1
activity can be up-regulated in the setting of endocrine resistance.
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Fig. 7. IL-8 mediates the effect of FOXA1 on cell growth and invasion in
endocrine resistance. (A) Cell growth within 5 d in MCF7L-P and TamR cells
with IL-8 knockdown by two different sequences. N.S. knockdown was used
as normalization control. (B) A stable MCF7L-TamR/IL-8 cell line was estab-
lished to express Dox-inducible IL-8, encoded by an IL8 cDNA without 3′-UTR
sequence. Two different IL8 siRNA sequences, targeting either the IL8 coding
DNA sequence (#1) or the 3′-UTR region (#2), were transiently transfected
into MCF7L-TamR/IL-8 cells ± Dox at two different doses. A 6-d cell growth
measurement was performed using methylene blue staining. Cell growth
under N.S. knockdown was used as the normalization control. (C) Western
blots of GFR downstream signaling mediators in MCF7L-TamR cells with
siRNA knockdown of N.S. or IL-8. (D and E) Measurement of IL-8 and FOXA1
mRNA by qRT-PCR in MCF7L cell lines with inducible FOXA1 overexpression,
or concomitant IL-8 knockdown under ± Dox. (F) Cell growth within 7 d in
four MCF7L lines with Dox induction (0.5 μg/mL), treated with E2 (as control)
or antiestrogen (ED, Tam, or Ful). Cell growth in the E2 group was set as
100%. (G) Cell invasion measurement in MCF7L-P and TamR cells transfected
with N.S. or IL-8–targeting siRNAs. Cells were seeded onto Matrigel-coated,
24-well Transwell plates and cultured for 48 h. The invading cells were
counted under a microscope for a total of nine random fields. Data are
presented as mean number of cells per field. (H) Cell invasion mea-
surement for MCF7L/FOXA1 cells ± Dox with siRNA knockdown of N.S.
or IL-8. Cell invasiveness was evaluated as above. Data represent means ±
SEM, *P < 0.05, **P < 0.01, ***P < 0.001, two-sided t test for indicated
comparisons.
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In this study, we showed that FOXA1 overexpression in ER+

breast cancer cells activated multiple oncogenic pathways,
leading to endocrine resistance and enhanced cell invasion.
Conversely, knockdown of FOXA1 in TamR cells suppressed
the corresponding oncogenic/GFR downstream signaling,
leading to decreased cell growth in Endo-R cell lines. Similarly,
high levels of FOXA1 have been shown to increase the growth
of prostate cancer cells and xenograft tumors and to correlate
with poor prognosis in prostate cancer patients (21, 51). In
breast cancer, high levels of FOXA1 have generally been
regarded as a marker of good prognosis (15). As a luminal lineage
determinant, FOXA1 promotes the differentiation of normal
mammary epithelial cells. Likewise, in cancer cells, it may endorse
a classic transcriptional program of hormone receptors such as
ER, resulting in a more differentiated and endocrine-sensitive
phenotype.
Previous studies from our group and others have shown that

during ER+ disease progression, including under chronic Tam
treatment, ER switches from ligand (E2)-dependent to ligand-
independent or Tam-agonistic signaling and a transcriptional
program consistent with GFR downstream activation, leading
to endocrine resistance (4, 5, 8, 37). We report here that in-
creased levels of FOXA1 coordinate at least partly with ER in
this transcriptional reprogramming, leading to perturbed gene
signatures and signaling pathways associated with endocrine
resistance. As such, our data support a role for FOXA1 over-
expression in more aggressive ER+ tumors, which is in line with
the findings of high levels of FOXA1 in both breast and pros-
tate cancer metastases (8, 52). Moreover, we showed that
the perturbed genes in FOXA1-overexpressing MCF7L-P cells
were enriched for the predicted genes identified by FOXA1 and
EGF-induced ER cistromes, which conforms to a study in
MCF7 cells showing a rapid redistribution of ER binding me-
diated by FOXA1 in response to a combination of mitogens (8).
As such, increased levels of FOXA1 can drive ER transcrip-
tional reprogramming and endocrine resistance. Strong evi-
dence also comes from prostate cancer, where increased
FOXA1 in androgen-responsive prostate cancer cells facili-
tates AR-chromatin binding at new regions and promotes
castration-resistant and androgen-independent cell growth
(53). Furthermore, our current study revealed that the distinct
cistrome of FOXA1 in MCF7L-TamR cells was enriched for
the BCL11A and JUN/FOS motifs. Of note, we have pre-
viously shown in our Endo-R xenograft tumors the increased
activity of AP-1 (54), the transcription factor binding to the
JUN/FOS motif. Further, in a more recent study integrating
the expression data from our Endo-R xenograft models with
the previously reported growth factor-dependent ER cistrome,
and using functional AP-1 blockade, we identified AP-1 as a
key determinant of endocrine resistance by shifting the ER
transcriptional program (55). Altogether, our results suggest
complex interplays between AP-1, ER, and FOXA1 in endo-
crine resistance and in the associated genome-wide transcrip-
tional reprogramming. Importantly, however, in our Endo-R
cell models, we found that not all Endo-R cells with increased
FOXA1 maintained ER expression, and that even in those
maintaining ER not all of the transcriptional reprogram is
influenced by knockdown of ER. These findings suggest that
both ER-dependent and ER-independent (i.e., through other
transcription factors) mechanisms may underlie the impact of
increased FOXA1 on endocrine resistance, as has also been
suggested in prostate cancer androgen-deprivation resistant
models (56). In the context of this study, the role of FOXA1 in
mediating AP-1–dependent gene expression in an ER-dependent
or -independent manner is an open question and warrants
further study.
How exactly does FOXA1 at high expression levels induce

endocrine resistance? Interestingly, through an integrated cis-
tromic and transcriptomic approach and functional studies, we
identified IL8 among the most perturbed genes regulated by
FOXA1 in an ER-dependent manner in TamR cells. Sub-

stantial evidence indicates that increased IL-8 levels, through
direct effects on both tumor cells and tumor microenviron-
ment, promote survival of tumor-initiating cells (57), tumor
invasion and metastases (40), and therapy resistance (41).
However, in ER+ breast cancer, the role of IL-8 remains to be
determined. It has been reported that an inflammatory gene
signature identified in ER+ breast tumors is associated with
poor response to an aromatase inhibitor (58). We find that
IL-8 mediates, at least partially, the effect of increased FOXA1
on cell growth and invasion in our Endo-R cells. IL-8 knock-
down effectively inhibited Endo-R cell growth and invasion,
supporting the potential of IL-8 as both therapeutic target and
biomarker in treating Endo-R tumors with high levels of FOXA1
and IL-8.
Collectively, we report FOXA1 gene amplification and/or

overexpression in Endo-R cell line models. Subclonal evolution
and FOXA1/ER transcriptional reprogramming may coexist as
the underlying mechanism of endocrine resistance. IL-8 signaling
is one of the components embedded in the FOXA1/ER tran-
scriptional reprogramming and provides a potential therapeutic
target for ER+ tumors with increased FOXA1.

Materials and Methods
The Endo-R derivatives were developed from P cells of MCF7L from
M. Lippman (Sylvester Comprehensive Cancer Center, Miami, FL),
600MPE (J.W.G.), ZR75-1 (American Type Culture Collection), and BT474
(AstraZeneca), using the method we previously reported (59). The MCF7RN
Endo-R cell model was kindly provided by R. Nicholson and J. Gee, Cardiff
University, Cardiff, UK. All of the cells were authenticated and the P cells
were maintained in RPMI/1640 (MCF7, ZR75-1) or DMEM/high-glucose
(600MPE, BT474), supplemented with 10% (vol/vol) heat-inactivated FBS
and 1% (vol/vol) penicillin/streptomycin/glutamine (PSG). The Endo-R
cells were kept in phenol-red free (PRF) medium supplemented with 10%
(vol/vol) heat-inactivated charcoal-stripped (CS)-FBS and 1% (vol/vol)
PSG, with (for TamR) or without (for EDR) the addition of 100 nM 4-OH-
Tam (H7904; Sigma). The Dox-inducible FOXA1-overexpressing cell lines
were established using a lentiviral cDNA delivery system from X. Pan,
(Novartis, Cambridge, MA) and maintained by 200 μg/mL Geneticin
(Invitrogen). The Dox-inducible shIL-8 knockdown cell lines were estab-
lished using the pINDUCER system (60). Exome-seq and CN analysis, FISH
and gPCR assay, Western blotting, animal studies, RNA interference, cell
growth assay, RNA-seq and gene expression analysis, Kaplan–Meier
curves, RPPA and signaling pathway analysis, integrated ChIP-seq and
RNA-seq data analysis, qRT-PCR, integrative cistromes analysis, ChIP-
qPCR, ELISA, IHC, immunofluorescence staining, and cell invasion assay
are described in SI Materials and Methods. Statistical analysis of in vitro
assays was based on at least triplicated data using R software (v2.13.0) or
GraphPad Prism (v5.04). All experiments were repeated at least three
times. Quantitative data are shown as mean ± SEM from triplicates or
quadruplicates. Significant difference (P < 0.05) was determined by
ANOVA or Bonferroni post hoc tests (multiple testing corrected).

Animal care and animal experiments from this study were in accordance
with and approved by the Baylor College of Medicine Institutional Animal
Care and Use Committee.
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